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This paper describes an extension of the GENSMAC code for solving two-dimen-
sional free surface flows to axisymmetric flows. Like GENSMAC the technique is
finite difference based and embodies, but considerably extends, the SMAC (simpli-
fied marker and cell) ideas. It incorporates adaptive time stepping and an accurate
representation of the free surfaces while at the same time only uses surface particles
to define the free surfaces, greatly increasing the computational speed; in addition,
it employs a graphic interface with solid modeling techniques to provide enhanced
three-dimensional visualization. Various simulations are undertaken to illustrate and
validate typical flows. Both G. I. Taylor’s viscous jet plunging into a fluid and a
liquid drop splashing onto a fluid are simulated. Also, the important industrial ap-
plication of container filling is illustrated. Finally, a comparison is made with the
linear theory of standing waves and the code is validated by a numerical convergence
study. c© 2000 Academic Press

Key Words:Navier–Stokes; marker-and-cell method; free-surface stress condi-
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1. INTRODUCTION

Industrial applications of fluid flows with free surfaces are ubiquitous: applications in-
clude casting, container filling, extrusion, and fluid jetting devices. The accurate determi-
nation of these free surfaces is important especially if the flow itself is determined by the
position and curvature of the free surface as it would be if surface tension were significant. It
is also essential that any numerical algorithm can cope with merging, folding, or separation
of free surfaces.

Over the years a number of computational techniques have been developed for solving
free surface flows (see, e.g., Shyyet al. [1]). These may be broadly divided into two cate-
gories: interface tracking methods and front-capturing methods. Front or shock-capturing
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methods are usually associated with compressible fluids; these methods are now extremely
sophisticated, explicitly enforcing monotonicity through a nonlinear step while simultane-
ously maintaining high order. The reader is referred, for instance, to the books by LeVeque
[2] and Hirsch [3].

Tracking methods may be subdivided into front-tracking and volume-tracking. If high
accuracy is required it is generally accepted that front-tracking is needed, when the in-
terface itself is described by additional computational elements. Although the basic idea
goes back to Richtmyer and Morton [4], its primary implementation has been through
the work of Glimm and his co-workers (see, e.g., Glimmet al. [5]). They represent the
moving front by a connected set of points which form a moving internal boundary. To
calculate the evolution inside the fluid in the vicinity of the interface, an irregular grid is
constructed and a special finite difference stencil is used on these irregular grids. Authors
who have used this approach to different flow regimes include Chernet al. [6], Daripa
et al. [7], Moretti [8], and Peskin [9] (also Fauci and Peskin [10] and Fogelson and
Peskin [11]). In Peskin’s work the connected set of particles carry forces which are ad-
justed to achieve a specific velocity at the interface. Within this category one might include
the so-called boundary integral or boundary element methods and the vortex-in-cell (VIC)
method. Boundary integral methods can be effective when inertia forces are negligible
(see, for instance, Baker and Moore [12] or Tsai and Miksis [13] who solve successfully
the axisymmetric problem of gas bubbles rising in a liquid). The vortex-in-cell method,
normally used for homogeneous flows, has been extended to cope with weakly stratified
flows (Meng and Thomson [14]) and arbitrary stratification (Tryggvason [15]). More re-
cently Unverdi and Tryggvason [16] described a front-tracking method for incompressible,
viscous, multifluid flows in which the interface is explicitly tracked but maintains a dis-
tinct thickness dependent upon the mesh size. The main advantage of this approach is that
interfaces can interact in a rather natural way, since gradients simply add or cancel as the
grid distribution is constructed from the information carried by the tracked front. Another
approach which has found favor is the level set approach. This would appear to have been
first introduced by Osher and Sethian [17]. The level set function is typically a smooth
function which eliminates the sorts of problems, such as oscillations, that conventional dif-
ference schemes often have. It also removes having to add or subtract points to a moving
grid and it automatically takes care of merging and breaking up of an interface. More re-
cently, Sussmanet al. [18] have combined the level set approach with projection methods
(see, e.g., Bell and Marcus [19]) to avoid explicitly tracking the interface. A level set ap-
proach has also been applied to three-dimensional two-phase flows by Beaux and Banerjee
[20].

Volume-tracking methods can be further subdivided into marker-and-cell (MAC) and
volume-of-fluid (VOF) methods. Indeed, the original MAC method was one of the first such
tracking methods dating back to Harlow and Welch [21]. Both these classes of methods are
still popular and, although they suffer from not being able to accurately provide a surface
interface, arguably this is less important today—a 100× 100× 100 grid is possible on a good
workstation and will certainly be easily feasible on even a modest one in the next few years.
With the MAC method virtual marker particles are pushed forward according to the Eulerian
fluid calculation (with appropriate bilinear interpolation for the velocity components) and it
is these that define the fluid region and hence the interface. The simplified-marker-and-cell
(SMAC) was introduced by Amsden and Harlow [22]. Over the intervening years research
into this method has continued; see, for example, Miyata [23], Viecelli [24], and Hirt and
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Shannon [25] who also used the immersed boundary technique to handle its interaction
with the underlying grid.

Possibly the first volume-in-fluid type code was the simple line interface calculation
(SLIC) of Noh and Woodward [27]. This was employed by Chorin [28] to model flame
propagation and later by Ghoniemet al.[29] and Sethian [30] to model turbulent combustion.
However, one usually associates Hirt and Nichols [31] with the VOF method, whereby a
volume fraction is convected forward with the fluid. This then led to many variants and
descendants, namely, SOLA-VOF (Nicholset al. [32]), NASA-VOF 2D (Torreyet al.
[33]), NASA-VOF3D (Torreyet al. [34]), RIPPLE (Kothe and Mjolsness [35], Kothet al.
[36]) and Flow3D (Hirt [37]). These have been widely used in industrial applications.
Most recently, an interesting idea of a second order VOF tracking method, employing an
approximate projection operator, has been put forward by Puckettet al. [38].

Recently, Tom´e and McKee [39], motivated by industrial filling processes, returned to the
SMAC methodology and developed the GENSMAC code. GENSMAC simulates incom-
pressible time dependent fluid flows in Cartesian coordinates within arbitrary, user-specified
two-dimensional domains. In addition, it can handle free-slip and no-slip boundary con-
ditions, there can be a number of inflows and outflows, and a number of arbitrary shaped
obstacles can be contained within the general flow domain. However, although GENSMAC
has a wide range of applicability it cannot deal with axisymmetric flows nor can it display
output in a three-dimensional form. This paper describes briefly how GENSMAC may be
modified to cope with axisymmetric flows; it also discusses how the techniques of solid
modeling may be applied through a graphic interface to permit enhanced flow visualization.

2. BASIC EQUATIONS

We consider incompressible axisymmetric Newtonian flows. The governing equations
are the nondimensional mass and momentum equations in conservative form which in
cylindrical coordinates may be written as [22]
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where Re=U L/ν and Fr=U/
√

Lg denote the Reynolds number, and the Froude number,
respectively. HereL andU are the length and velocity scales, respectively,ν is a reference
viscosity, andg denotes the gravitational constant,g= |g|, whereg= (gr , gz). Furthermore,
u= (u, v)T are the radial and vertical components of velocity whilep is the pressure per
unit density.

3. METHOD OF SOLUTION

In order to solve Eqs. (1)–(3) we employ the GENSMAC methodology. In particular,
in calculatingũ(r, z, t) in step 2 we employ an efficient adaptive time stepping routine. A
more complete description may be found in [39].
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It is supposed that at a given timet0, the velocity fieldu(r, z, t0) is known and boundary
conditions for the velocity and pressure are given. The updated velocity fieldu(r, z, t) at
t = t0+ δt is calculated as follows:

1. Let p̃(r, z, t) be a pressure field which satisfies the correct pressure condition on
the free surface. This pressure field is computed according to the stress conditions given in
Section 4.2.

2. Calculate the intermediate velocity fieldũ(r, z, t) from the explicitly discretized
form of
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with ũ(r, z, t0)= u(r, z, t0) using the correct boundary conditions foru(r, z, t0). It can be
shown [40] that̃u(r, z, t) possesses the correct vorticity at timet . However,ũ(r, z, t) does
not satisfy (1). Let

u(r, z, t) = ũ(r, z, t)−∇ψ(r, z, t) (6)

with

∇2ψ(r, z, t) = ∇ · ũ(r, z, t). (7)

Thus,u(r, z, t) now satisfies (1) and the vorticity remains unchanged. Therefore,u(r, z, t)
is identified as the updated velocity field at timet .

3. Solve the Poisson equation (7).
4. Compute the velocity (6).
5. Compute the pressure. It can be shown [40] that the pressure is given by

p(r, z, t) = p̃(r, z, t)+ ψ(r, z, t)/δt. (8)

6. Update the positions of the marker particles.

The last step in the calculation involves moving the marker particles to their new positions.
These are virtual particles whose coordinates are stored and updated at the end of each cycle
by solving

dr

dt
= u,

dz

dt
= v

by Euler’s method. This provides a particle with its new coordinates, allowing us to de-
termine whether or not it moved to a new computational cell or if it left the containment
region through an outlet. Only marker particles on the surface are considered; Section 4.3
will describe how this is achieved.

3.1. Boundary Conditions

Boundary conditions must be imposed both on fixed boundaries and on free surfaces. On
fixed boundaries we can impose no-slip, free-slip, prescribed inflow, prescribed outflow,
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and continuative outflow (for details, see [39, 41]). The implementation of these boundary
conditions is performed in the same way as in the GENSMAC code.

The appropriate free surface boundary conditions are the vanishing of the normal and
the tangential stresses which in the absence of surface tension are (see Batchelor [42,
p. 150])

n · σ · n = 0 (9)

m · σ · n = 0, (10)

wheren andm are local unit normal and tangential vectors andσ is the stress tensor given
by

σi j = −pδi j + 2

Re

(
∂vi

∂xj
+ ∂v j

∂xi

)
.

These conditions are applied by making accurate local finite difference approximations on
the free surface [39] and will be given in Section 4.2. The appropriate boundary conditions
for the Poisson equation (7) (see [22]) are

∂ψ

∂n
= 0 on fixed boundaries andψ = 0 on the free surface. (11)

4. BASIC FINITE DIFFERENCE EQUATIONS

To implement the method presented in Section 3 we employ the finite difference method
as follows.

A staggered grid is employed. A typical cell is as shown in Fig. 1. The variables, pressure
p̃i, j and the added velocity potentialψi, j , are positioned at the cell center whileui, j and
vi, j are staggered by a translation ofδr/2 andδz/2, respectively.

The momentum equations (4) and (5) are discretized and applied at theu-nodes and
v-nodes, respectively. A forward difference in time is used for the time derivatives and the
linear spatial terms on the right-hand side are approximated by central differences; for the
convection terms in (4) and (5) the ZIP (see [22]) form is adopted. For the flux terms(uv),

FIG. 1. Computational cell.
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simple averages are performed; for instance,
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Hereri denotesi δr . The Poisson equation (7) in cylindrical coordinates becomes
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We point out that direct discretization of (14) would lead to a nonsymmmetric linear sys-
tem which would be required to be solved by, for example, the biconjugate gradient method
which is considerably less efficient than the conjugate gradient method. However, by rewrit-
ing (14) in the form
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and discretizing (15) at the surface cell center we obtain (assumingδr = δz)
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where
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It is now easily seen that (16) leads to a linear system possessing a symmmetric positive
definite matrix and consequently we employ the conjugate gradient method as implemented
in GENSMAC for solving this linear system.

4.1. Cell Flagging

As the fluid is continuously moving, a procedure for identifying the fluid region and
the free surface is employed. To accommodate this, the cells within the mesh are flagged
according to whether they are surface cells (S), full cells (F), empty cells (E), boundary
cells (B), inflow cells (I), or outflow cells (O). A detailed description can be found in [39].

4.2. Free Surface Stress Conditions

The stress conditions (9), (10) can be written as
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In order to apply these conditions we follow the approximations adopted by GENSMAC
[39]; namely, we consider two types of free surface orientations as follows:

(a) Horizontal/vertical surfaces: These surfaces are identified by surface cells having
only one side contiguous with empty cells. For these cells we assume that the normal vector
is pointing toward the empty cell in which case we taken= (nr , 0) or n= (0, nz). The
choice is made according to which side is contiguous with the empty cell. For instance, if a
surface cell has only the top side contiguous with an empty cell (see Fig. 2), then we take

FIG. 2. Surface cell with only the top side contiguous with an empty cell.
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n= (0, 1). Equations (17) and (18) then reduce to
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It can be seen that when computing the tilde velocities through (12) and (13) the pressure
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Once the velocities have been computed the pressurep̃i, j follows from (19) applied at the
surface cell center, giving
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Other types of configurations of surface cells having only one side contiguous with empty
cells are treated similarly.

(b) 45◦-sloped surface: These surfaces are identified by surface cells having two ad-
jacent faces contiguous with empty cells. For these cells we assume that the normal vector
makes 45◦ with the axes in which case we taken= (±
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surface cell in Fig. 3. For this cell we taken= (
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FIG. 3. Surface cell having the top and right sides contiguous with empty cells.

As we can see in Fig. 3, the values ofui+ 1
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are required. These are obtained by
applying (22) and the mass conservation equation (1) at the surface cell center to give
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Equations (23) and (24) provide a(2× 2)-linear system forui+ 1
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Once the velocities at the empty cell faces have been computed, the pressure follows from
(21) applied at the surface cell center, giving
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For other configurations of surface cells with two adjacent sides contiguous with empty
cells the values ofu, v, and p̃ are obtained similarly.
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(c) Surface cells with three sides or two opposite sides contiguous with empty cells:
These cells do not provide enough information to obtain an approximation for the unit
normaln. If they appear during a calculation we set the pressure equal to zero and adjust
at least one velocity on one of the empty cell faces so that mass is conserved. To minimize
the appearance of such cells a finer mesh should be employed.

4.3. Particle Movement

In order to improve the computational efficiency of the code, individual modules or
subprograms making up GENSMAC were analyzed. It was found that the particle movement
routine accounted for 40% of the total computational time. This is principally because a
large number of particles, often as many as 20 per cell, are required to accurately represent
the fluid. In truth, internal particles are redundant since the surface particles define the
boundary of the fluid and thus the fluid region itself. Thus, a new technique was devised
based upon representing the fluid by its boundary using a set of ordered lists defining the
interior (and hence the exterior) of the fluid region. Each list stores connected information
about the position of the particle, the type of cell it is located in, and the type of movement
the particle is entitled to make. For instance, a node of type “inflow” cannot move, whereas a
node of type “surface” can move freely according to the velocity field. The fluid movement
is obtained by solvinġr = u(r, z, t), ż= v(r, z, t), whereu, v are the velocities in ther - and
z-directions, respectively. Asu andv are defined on a staggered grid, the velocity in each
node is obtained from bilinear interpolation using the four nearest velocities. From time to
time neighboring particles get too close or become separated by too great a distance. In the
first case it is necessary to have a systematic means of particle removal while in the second
if a surface cell becomes devoid of particles, a new particle is created in that cell equidistant
from its two nearest neighbors. This new technique, simple though it is, has enhanced the
computational efficiency of the code enabling it to solve both the jet flow problem and the
splashing drop problem in reasonable time on a workstation.

4.4. Merging of Surfaces

As mentioned in Section 4.1, at each calculational cycle a reflagging algorithm is per-
formed which updates the cells in the mesh. This reflagging algorithm is based on the
following three steps:

1. During the particle movement all cells into which particles have moved are flagged
asS cells. Observe that during this step the passageF→S andE→S is performed (see
Scheme 1b).

2. A sweep is made on the surface cells which do not contain particles (see Scheme 1c).
If a surface cell has no face which is contiguous with an empty cell then it becomes a full
cell; otherwise, it becomes an empty cell. In this step the passageS→F andS→E is
performed.

3. A sweep is made on the surface cells which contain particles (see Scheme 1d). If a
surface cell does not have any face contiguous with a empty cell then it becomes a full cell.
In this step the passageS→F is performed.

Scheme 1 displays one step of particle evolution and illustrates how free surfaces are allowed
to merge.
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SCHEME 1. Configuration of the cells in the mesh: (a) before particle movement, (b) after particle movement,
(c) after application of step 2 of reflagging, (d) after application of step 3 of reflagging.

5. IMPLEMENTATION NOTES

The inclusion of cylindrical coordinates into the GENSMAC code will only affect steps
1, 2, and 3 in the computational procedure given in Section 3. Steps 4, 5, and 6 remain the
same since the equations do not change from those of two-dimensional Cartesian flows.
It was therefore necessary to write a routine to calculate the tilde pressure fieldp̃(r, z, t)
from the stress conditions on the free surface (see Section 4.2); it was further necessary to
write a routine to calculate the tilde velocities,ũ(r, z, t), ṽ(r, z, t) from Eqs. (12) and (13).
On the other hand the discretized Poisson equation can be solved by the same conjugate
gradient technique employed in GENSMAC. Thus, only a routine to assemble the matrix
and the right-hand-side vector was required. Finally, it is necessary to obtain boundary
conditions foru(r, z, t) on the free surface: this was achieved by a routine which computed
the velocities on empty cell faces using the equations given in Section 4.2. The boundary
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conditions on rigid boundaries were handled in exactly the same way as for the original
GENSMAC code [39].

6. VISUALIZATION AND SOLID MODELING

The amount of data generated by modern CFD codes is such as to make flow visualization
essential. The visualization package associated with GENSMAC has the facility to collect
domain data and flow parameters and display them graphically.

In this paper a specific package (VisFreeFlow) was developed for modeling the flow
domain, for parameter reading, and for visualization of the results. The module for the flow
domain is achieved by means of a graphical editor comprising a drawing area, command but-
tons for interacting with the model, configuration options, and file management tools. Each
fluid containment region may be designed using polylines and arcs. Inflows and outflows
are specified and displayed using different colors. Additional interaction techniques such as
“dragging,” “rubberbanding,” and grid referencing have been made available. Domain data
can also be input as a connected coordinate list in the input file accepted by GENSMAC.
The domain editor works independent of the simulation process, thereby allowing, for ex-
ample, the same mould to be used in connection with distinct simulations. The parameter
reading module of VisFreeFlow provides a graphical user interface for inputing data such
as viscosity, length, and velocity scales. This module is based on the XWindows windowing
system, with motif-like dialogue structures, and has the following features readily available:
data validation, data filing, data retrieving, and the changing of flow data options. It is also
responsible for triggering the simulation process.

The output of the simulation can be graphically displayed with the visualization module
of VisFreeFlow. The visualizations that are possible include the cell grid, the velocity,
and the pressure. The fluid flow itself is visualized by boundary tracing and space filling.
Pressure can be visualized either using isolines or by color mapping of the pressure ranges.
The velocity field can be visualized either by vector plots that represent direction and
magnitude or by using isolines in a manner similar to that used for the pressure plots. The
parameters for all of the visualization options may be interactively changed to obtain the best
resolution. Multiple viewing is also available by using different windows or by “layering”
plots together. When detailed analysis is required a zoom in and out facility is available. In
addition, VisFreeFlow has animation facilities.

The VisFreeFlow software, described above, is restricted to demonstrating two-dimen-
sional fluid flow. However, the simulation data employed by VisFreeFlow can be used
by the visualization package VTK—The Visualization Toolkit [44]—to generate three-
dimensional visualizations (see Figs. 7–11, 14, and 15). VTK provides a portable set of data
formats and visualization algorithms to operate on the data. The package can be tailored for
user specific applications by building an appropriate interface. It is object-orientated and can
be programmed using C++ or Tcl/Tk. By taking advantage of the axisymmetric nature of the
free surface flows under consideration, three-dimensional visualizations were generated by
rotating about thez-axis the available data defining the two-dimensional surface. The data
from the two-dimensional fluid flow simulation were converted from their original format
into a suitable VTK data format through a C program [45]. The VTK primitives used to
describe the container, the extrudor (where appropriate), and the fluid surface at different
times are polylines. For example, the polylines describing the two-dimensional profiles of
the container, the extrudor, and the fluid surface at each instant of time were generated as
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FIG. 4. Primitives used to generate the three-dimensional view of the cavity filling problem (see Fig. 11).

illustrated in Fig. 4. The profiles for the jet flow, the splashing drop and the cavity-filling
simulations at different times (see Section 7) were rotated about thez-axis, generating the
three-dimensional visualization shown in Figs. 6–10, 13, and 14, respectively. Each picture
displays the fluid flow configuration at a different time. The complete set of images may be
recorded as a video file for animation of the flow simulation. Details on the data conversion,
file formats, and visualization can be found in [45].

7. NUMERICAL EXAMPLES AND QUALITATIVE VALIDATION

In this section we shall consider three problems: a vertical jet plunging into a fluid, a
splashing drop, and container filling by extrusion from a circular nozzle.

7.1. Jet Flow Experiment

In an important early work Taylor [43] experimented with jet flows. In particular, he
injected a jet into a box containing the same fluid and this he did for four different fluids. He
identified the jet by coloring it while leaving the fluid in the box uncolored. By maintaining
the nozzle diameterD and the inlet velocityV constant (see Fig. 5), any differences in the
flows were only due to differences in the Reynolds number, the Froude number remaining
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FIG. 5. Jet flow experiment.

constant throughout. The experiments were performed for the following Reynolds numbers:
Re= 0.05, 10, 200, and 3000. It was seen that in the case of Re= 0.05 the simulated highly
viscous fluid produced a compression stress causing the jet to buckle on reaching the free
surface of the quiescent fluid and so not penetrate the mass of fluid contained within the
box. For Re= 3000 the jet quickly broke up, causing rapid mixing and turbulence. For the
other two experiments the jet bore into the fluid with a mushroom-like head formed at its
front. We observe, from Taylor’s photographic evidence (see Fig. 8a), that for Re= 10 the
jet penetrates only a few jet diameters before spreading out into a mushroom-like head. For
higher Reynolds number fluids (Re= 200) the mushroom-like head is also observed (see
Fig. 9a), but in this case the jet penetrates the fluid until the bottom of the box is reached.

To validate the technique presented in this paper we have simulated a jet impinging on a
box of quiescent fluid so that a comparison with Taylor’s results may be effected. We used a
cylindrical box of diameter 12 cm and height 16 cm from which a colored jet falls vertically
into the box at a prescribed velocity of 50 cm s−1 (see Fig. 5). The no-slip condition was
applied on the box walls while on the axis of symmetry the symmetry condition (see [39])
was applied. The convergence criteria for the Poisson equation was EPS= 10−6 and three
particles per cell were employed to represent the free surface of the fluid. To simulate the
incoming jet, a round nozzle of diameterD= 4 mm and 3 cm length was set 1 cm above the
fluid surface in the box, from which the fluid jet travels at a constant velocity of 50 cm s−1.
Gravity was acting downward withgz = −1 and the gravitational constant was taken to
be g= 981 cm s−2; this gave a Froude number of Fr= U√

gD
= 2.52409. A mesh size of

δr = δz = 0.05 cm was employed (120× 400 cells within the mesh). Two runs were
performed; the difference between these were only due to the value of viscosity. In the
first run we setν= 2.0 cm2 s−1 and for the second run we usedν = 0.1 cm2 s−1, giving
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Reynolds numbers of

Re= V D

ν
= 10, and Re= V D

ν
= 200,

respectively. Figure 6 displays a series of snapshots of the jet flow simulation for Re= 10 at
different times. Figure 7 displays the time evolution of the Re= 200 simulation. Figure 8a
displays Taylor’s photograph for the case of Re= 10 and Fig. 8b displays a front view
of the three-dimensional jet shown in Fig. 8c. Figure 9a displays Taylor’s photograph for
the case of Re= 200 and Fig. 9b displays a front view of the three-dimensional jet shown

FIG. 6. Jet flow experiment: Re= 10. Fluid flow visualization at nondimensional times: (a)t = 15.0,
(b) t = 27.5, (c) t = 57.5, (d) t = 115.0.
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FIG. 7. Jet flow experiment: Re= 200. Fluid flow visualization at nondimensional times: (a)t = 7.5,
(b) t = 20.0, (c) t = 57.5, (d) t = 110.0.

in Fig. 9c. As we can see the agreement with Taylors’s experiment is excellent although
for the Re= 200 case the simulation appears to underestimate the amount of diffusion.
This demonstrates that the technique presented here can indeed cope with complicated
axisymmetric flows.

7.2. Splashing Drop Simulation

We consider a pool of diameter 22 cm and height 7 cm full of a quiescent fluid. A spher-
ical drop of fluid of diameter 3.2 cm was placed at a height of 3 cm above the pool with an



AXISYMMETRIC FREE SURFACE FLOWS 457

FIG. 8. Jet flow simulation: Re= 10. Fluid flow visualization att = 115.0. Comparison with experimental
data: (a) Taylor’s photograph; (b) front view of the jet flow simulation; (c) three-dimensional view.
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FIG. 9. Jet flow simulation: Re= 200. Fluid flow visualization at timet = 110. Comparison with experimental
data: (a) Taylor’s photograph; (b) front view; (c) three-dimensional view.



FIG. 10. The splashing of a drop of a Newtonian fluid: fluid flow visualization at different times.

459
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initial velocity of−100 cm s−1. It was then allowed to fall under gravity into the pool. The
cell size employed wasδr = δz= 0.2 cm; gravity was taken to beg=−981 cm s−2; and
viscosity was chosen to beν= 3 cm2 s−1. The scaling parameters were set toU = 100 cm s−1

andL = 3.2 cm, giving Re= 106.667 and Fr= 1.7848. A series of snapshots in time of the
simulated splashing drop are displayed in Fig. 10. It is interesting to observe that, as the drop
disappears within the bulk of the fluid, a thin jet emerges composed entirely of the original
quiescent fluid. Further, a circular hydraulic jump can be observed moving away from the
center.

7.3. Simulation of Container Filling

Many manufacturing industries are concerned with extruding their product into a con-
tainer. Often the fluid product (e.g., paint, milk, or molten alloys) is non-Newtonian and
GENSMAC has been demonstrated to deal with such fluids (see [40]). An extension to non-
Newtonian fluids (e.g., generalized Newtonian fluids using the cross and power-law models)
is not difficult and closely follows the discussion in [40]. Next we present the simulation of
the filling of two popular containers which are commonly used by the industry.

Simulation of the filling of a circular tub. Here we shall simply consider the extrusion
of a Newtonian fluid into a “circular tub” from a cylindrical nozzle (see Fig. 11a); The flow
domain is assumed to be as shown in Fig. 11b. The code was run with the following input
data:

U = 100 cm s−1 (nozzle velocity)

D = 1 cm (nozzle diameter)

ν = 50 cm2 s−1 (fluid kinematic viscosity).

This gave a Reynolds number of Re=U D/ν= 2.0 and a Froude number of Fr≈ 3.193. The
flow domain was defined by settingL1= 5 cm,L2= 4 cm, andH = 6 cm (see Fig. 11b). The
nozzle was placed at a distance of 1 cm above the tub. A mesh spacing ofδr = δz= 0.1 cm

FIG. 11. The filling of a circular tub.
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FIG. 12. Simulation of the filling of a circular tub: fluid flow visualization at different times.

was employed. The simulated fluid plots are displayed at a sequence of given times in
Fig. 12. This fill represented a reasonably successful industrial fill: there was no spillage
through splashing, spluttering, or sloshing although the final product may exhibit the phe-
nomenon known in the trade as doming—that is, the surface of the final product may not
be entirely horizontal and may slope down at the sides.
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FIG. 13. The filling of a bottle.

Simulation of the filling of a bottle.To demonstrate that the code can cope with complex-
shaped domains we simulated the filling of a curved bottle with a Newtonian fluid (see
Fig. 13a). The following data were employed:

U = 100 cm s−1 (nozzle velocity)

D = 1.4 cm (nozzle diameter)

ν = 50 cm2 s−1 (fluid kinematic viscosity).

This gave a Reynolds number of Re=U D/ν= 2.8 and a Froude number of Fr≈ 2.6984.
The flow domain was defined by the set of points shown in Fig. 13b. The mesh spacing
chosen wasδr = δz= 0.1 cm (34× 286 cells within the mesh), the convergence criteria
for the Poisson equation wasEPS= 10−7, and three particles per cell were used to repre-
sent the fluid surface. A nozzle having 4 cm length was situated 1.5 cm above the bottle.
Figure 14 displays the simulated fluid flow configuration at different times.

8. VALIDATION AND CONVERGENCE RESULTS

In this section we present quantitative evidence showing that the technique presented
in this paper does converge to the solution of the underlying Eqs. (1)–(3) presented in
Section 2.
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FIG. 14. Simulation of the filling of a bottle. Fluid flow visualization at different times: (a)t = 10.715,
(b) t = 17.150, (c)t = 32.150, (d)t = 50.000, (e)t = 85.715, (f ) t = 135.715, (g)t = 189.286, (h)t = 212.159.
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8.1. Comparison with Linear Theory for Standing Waves

The problem we considered for validating the code consists of an axisymmetric irro-
tational flow (cylindrical pool) with a sufficiently small surface displacement. We have
compared the computed and the analytical solutions, using linear theory for axisymmetric
standing gravity waves. It is easy to show that the solution to this problem is composed of
linear combinations of modes of the form (see Stoker [46])

u(r, z, t) = −Amcos(σ t)J1(mr) cosh(mz) (28)

v(r, z, t) = Amcos(σ t)J0(mr) sinh(mz) (29)

ξ(r, t) = Aσ

g
sin(σ t)J0(mr) cosh(mH), (30)

whereg is the gravity andσ = √gmtanh(mH) is the angular frequency of the wave.H is
the initial depth of the pool,R is the radius of the pool,m is a constant such thatJ1(m R) = 0,
A is a small arbitrary constant defining the wave amplitude, andξ is the displacement of
the free surface with respect to the initial surface.

The initial profile of the velocities and the surface elevation are obtained by takingt = 0
in (28)–(30). It is easily seen that the solution, defined by (28)–(30), satisfies the following
boundary conditions (see Fig. 15):{

∂v(r,z,t)
∂r

∣∣
r=0
= 0

u(0, z, t) = 0

{
∂v(r,z,t)
∂r

∣∣
r=R
= 0

u(R, z, t) = 0

{
∂u(r,z,t)
∂z

∣∣
z=0
= 0

v(r, 0, t) = 0

We solved the problem depicted in Fig. 15 for different input data and compared the nu-
merical solutions to the exact solutions given by (28)–(30). Next we present the results of
some representative simulations. The following data were employed:

• ν = 0.1, g = −1, H = 7.6251,
• L = U = 1, δr = δz= 0.0766342.

The parametersm and R were varied; all other parameters were held fixed. Quantitative
results, summarized in Table I, show reasonable agreement between the analytical and
the calculated frequency of oscillation and the maximum amplitude of the wave elevation.
Nonetheless, the differences are significant. These, we believe, are due to the fact that we are
solving the full Navier–Stokes equations; the analytic expressions (28)–(30) are, of course,

FIG. 15. Problem definition for the wave simulation.
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TABLE I

m R σexact σcalc %-error ξ exact
max ξ calc

max %-error

1.00 3.8317 0.9905 0.9844 0.6158 0.3813 0.3408 10.610
0.50 7.6634 0.7000 0.7064 0.9116 0.3813 0.3646 4.3685
0.25 15.327 0.4844 0.4872 0.5881 0.3813 0.3722 2.3781

only valid for potential irrotational flow. Further evidence of this is provided in Table I since
it can be seen that the differences decrease as the radius of the pool increases: the larger the
wavelength the smaller will be the nonlinear and viscous effects since both the depth and
the maximum amplitude of the wave were held fixed. Form= 0.25 andR= 15.327, Fig. 16
displays the time evolution of the surface elevation atr = 0 (i.e.,ξ(0, t) + H ). It can be
seen that there is good agreement between the numerical and analytical results. Figure 17
shows the spatial variation of the surface elevation at timet = π

2σ . This corresponds to the
first crest of the wave. Again, we can observe that there is good agreement between the two
solutions.

8.2. Mesh Refinement

To demonstrate that the method of this paper does in fact converge as the mesh is refined
we have performed three calculations with decreasing mesh spacings, both for the splashing
drop and for the cavity filling problem.

For the splashing drop the following input data were employed:

• a cylindrical pool of quiescent fluid, diameter 22 cm and height 7 cm.

FIG. 16. Time evolution of the surface elevation atr = 0; — numerical solution,- - - - analytical solution.
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FIG. 17. Spatial variation of the surface elevation att = π

2σ
; — numerical solution,- - - - analytical solution.

• a spherical drop of fluid of diameter 3.2 cm positioned initially 3 cm above the
center of the pool with an initial velocityV =−100 cm s−1.
• gravity assumed to be acting in the negativez-direction; i.e.,gz=−981 cm s−2.
• kinematic viscosityν = 3 cm2 s−1.
• scaling parametersL = 3.2 cm (diameter of the drop),U = 100 cm s−1 (initial ve-

locity of the drop), giving rise to Re= 106.67 and Fr = 1.7848.
• no-slip conditions applied on the side walls.
• Three particles per cell employed to represent the free surface of the fluid.

Figure 18 displays the configuration of the splashing drop simulation and its corresponding
velocity field, calculated using the above data and three different mesh spacings. For the
first run (see Fig. 18a) we employed a mesh spacing ofδr = δz= 0.4 cm which gave a
mesh size of 28× 35, for the second run (see Fig. 18b) we usedδr = δz= 0.2 cm, giving
a mesh size of 56× 70 and in the third run (see Fig. 18c) we employed a mesh spacing of
δr = δz= 0.1 cm which produced a mesh size of 112× 140.

We also considered the cavity filling problem presented in Section 7.3 and performed
three runs to check the convergence of the finite difference solution as the mesh is refined.
The following data were employed:

• a wedge-shaped circular container with dimensionsL1= 10 cm, L2= 4 cm, and
H = 7 cm (see Fig. 12b).
• nozzle diameterD= 1.6 cm.
• gravity was assumed to be acting in the negativez-direction; i.e.,gz=−981 cm s−2.
• kinematic viscosityν= 50 cm2 s−1.
• scaling parametersL = 1.6 cm (diameter of the nozzle),U = 100 cm s−1 (fluid

velocity at the nozzle) giving rise to Re= 3.2 and Fr= 2.52409.
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FIG. 18. Simulation of splashing drop on different grids. (a) grid 28× 35; (b) grid 56× 70; (c) grid 112× 140.
Fluid flow visualization and velocity plot att = 0.46875.

• three particles per cell on the free surface.
• no-slip conditions applied on the container walls.

It should be stressed that the only difference between runs, in both cases, were the mesh
spacings.

Figure 19 displays the fluid flow configuration of the jet filling and its corresponding
velocity field at the nondimensional time oft = 59.375 on the three meshes. For the first
run (see Fig. 19a) we employed a mesh spacing ofδr = δz= 0.4 cm which gave rise to a
13× 23 grid, for the second run (see Fig. 19b) we used aδr = δz= 0.2 which produced a
26× 46 grid, while for the third run (see Fig. 19c) the mesh spacings were chosen to be
δr = δz= 0.1 resulting in a mesh size of 52× 92 cells.

In both cases the figures suggest that convergence is being obtained.

8.3. Convergence Study

The results of the previous section show that the method converges as the mesh is re-
fined. To obtain an estimate of the rate of convergence we performed a number of runs
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FIG. 19. Simulation of cavity filling on different grids. (a) grid 13× 23; (b) grid 26× 46; (c) grid 52× 92.
Fluid flow visualization and velocity plot att = 59.375.

for the container filling problem on a set of increasingly finer grids. We considered the
problem depicted in Fig. 11 withL1= L2= 4.5 cm,H = 8 cm,U = 2 m s−1, D= 1.92 cm,
ν= 80 cm2 s−1, and gravity acting in the negativez-direction withg=−9.81 m s−2. This
gave a Reynolds number of Re= 4.8 and a Froude number of Fr≈ 4.6083. A total of nine
runs were performed on the following grids: Mesh I (h= 0.0032), Mesh II (h= 0.0024),
Mesh III (h= 0.0016), Mesh IV (h= 0.0012), Mesh V (h= 0.008), Mesh VI (h= 0.0006),
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TABLE II

l2-norm of the Errors in the Velocity Field and

Pressure for Different Mesh Spacings

h ||U −Uh||2 ||V −Vh||2 ||P− Ph||2
0.0032 0.0255 0.0893 0.4689
0.0024 0.0253 0.0556 0.4807
0.0016 0.0222 0.0486 0.1826
0.0012 0.0218 0.0423 0.1580
0.0008 0.0142 0.0264 0.1076
0.0006 0.0097 0.0180 0.1243
0.0004 0.0053 0.0092 0.0621
0.0003 0.0026 0.0045 0.0510

Mesh VII (h= 0.0004), Mesh VIII (h= 0.0003), and Mesh IX (h= 0.0002). As an analytic
solution for this problem is not known we supposed that the solution on the finest mesh
(Mesh IX) is the exact solution and computed thel2-normof the errors between this “exact
solution” and those on the coarser grids. Table II displays thel2-norm of the errors for
the velocity components and pressure. These errors were calculated on the coarsest grid
(Mesh I) by considering only full cells using the Matlab routine Interp2 to interpolate from
the finer grids. The reason for considering the full cells only was that there were points near
the boundaries on the coarsest grid which were not defined on the finer grids so that a fair
comparison could not have been properly made.

FIG. 20. Convergence rate study of the velocity components:3 error in Uh, - - - best fit (0.7584×
101 h0.925),+ error inVh, · · · best fit (0.7327× 102 h1.14771).
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FIG. 21. Convergence rate study of the pressure field:3 error in Ph, - - - best fit (0.1100× 103 h0.9511).

As we can see from Table II, the errors in the velocity components are monotoni-
cally decreasing while the pressure displays an oscillatory behavior. We believe that this
oscillatory behavior in the pressure, particularly forh= 0.0006, can be attributed to the
fact that the boundaries do not fit the mesh lines exactly. In order to obtain an estimate
of the rate of convergence a least square line is fitted to the log–log data in Table II; the
convergence rate is then given by the slope of the fitted line. Figure 20 displays the log–log
plot of thel2-normerror of the velocity components and Fig. 21 displays thel2-normerror
for the pressure. The slope for theu-error is 0.925, for thev-error it is 1.15, while for
the pressure the slope is 1.020. These convergence estimates are necessarily only approxi-
mate. Furthermore, if we neglect the less accurate solutions and start fromh= 0.0016 then
higher convergence estimates may be obtained for the velocity components. Indeed, the
convergence rate appears then to be closer to 1.5 for bothu andv. In conclusion, numerical
convergence estimates have been obtained and the results show that the method presented
in this paper is convergent of at leastO(h).

9. CONCLUSIONS

The GENSMAC code has been extended to cope with axisymmetric flows. The compu-
tational efficiency of the original code has been greatly increased with the use of surface
marker particles only. A graphic interface permits easy data input while the ideas of solid
modeling are employed to provide an output facility in the form of three-dimensional visu-
alization. Several examples have been included, including a comparison with G. I. Taylor’s
experiment of a jet impinging onto a quiescent fluid. Finally, a comparison with standing
waves and numerical convergence estimates were also provided.
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